Zhang Neural Network Versus Gradient Neural Network for Online Time-Varying Quadratic Function Minimization
نویسندگان
چکیده
With the proved efficacy on solving linear time-varying matrix or vector equations, Zhang neural network (ZNN) could be generalized and developed for the online minimization of time-varying quadratic functions. The minimum of a time-varying quadratic function can be reached exactly and rapidly by using Zhang neural network, as compared with conventional gradient-based neural networks (GNN). Computersimulation results substantiate further that ZNN models are superior to GNN models in the context of online time-varying quadratic function minimization.
منابع مشابه
MATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Online Solution of Linear Time-Varying Equations
Different from gradient-based neural networks (in short, gradient neural networks), a special kind of recurrent neural networks has recently been proposed by Zhang et al for time-varying matrix inversion and equations solving. As compared to gradient neural networks (GNN), Zhang neural networks (ZNN) are designed based on matrix-valued or vector-valued error functions, instead of scalar-valued ...
متن کاملA Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network
Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...
متن کاملMATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Online Solution of Linear Time-Varying Matrix Equation AXB-C=0
Different from gradient neural networks (GNN), a special kind of recurrent neural networks has been proposed recently by Zhang et al for solving online linear matrix equations with time-varying coefficients. Such recurrent neural networks, designed based on a matrixvalued error-function, could achieve global exponential convergence when solving online time-varying problems in comparison with gr...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملMATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Time-Varying Lyapunov Equation Solving
This paper presents a new kind of recurrent neural network proposed by Zhang et al. for solving online Lyapunov equation with time-varying coefficient matrices. Global exponential convergence could be achieved by such a recurrent neural network when solving the timevarying problems in comparison with gradient neural networks (GNN). MATLAB simulation of both neural networks for the real-time sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008